If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16y^2=80
We move all terms to the left:
16y^2-(80)=0
a = 16; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·16·(-80)
Δ = 5120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5120}=\sqrt{1024*5}=\sqrt{1024}*\sqrt{5}=32\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{5}}{2*16}=\frac{0-32\sqrt{5}}{32} =-\frac{32\sqrt{5}}{32} =-\sqrt{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{5}}{2*16}=\frac{0+32\sqrt{5}}{32} =\frac{32\sqrt{5}}{32} =\sqrt{5} $
| q+14=6q | | 8+5(x-5)=3-9(x-9) | | y+5=-8y+5 | | x+7(x+4)=180 | | 6w^2=11w+35 | | 20+6x-2+90=180 | | 3(x-5)=4(7-10) | | 40+2x+30+40=180 | | z-5=4z-14 | | (x-8^2)=-49 | | z-5=42-14 | | z−5=4z−14 | | 7k+2.5=k+18 | | y+0.40y=58 | | 13x+3=x+9 | | 10-(x-2)=8(x+11) | | -m-2=-4m-29 | | 13k+3=k+9 | | -m-2=-4-29 | | 7/8n-3=1/8n+3 | | (-7w-1)-(-4w-5)=12w+139 | | 10=p/10p= | | 10(x+3)-4(x-2=7(x+5) | | 275m+56100=53625=+150m | | 2d+8=-7d+17 | | 5=g8g= | | v=1/3(3.14)(2.5)(1.5^2+1.5(2)+2) | | 4/x-4+4/2x-8=6 | | 20x=8x-4=13x-3=5x+5 | | 55=35^x | | 2x+11=1/2(10+8x-12) | | 12a^2-35a-3=0 |